Features

- Pumps abrasive slurries, corrosive material, solids and gaseous liquids with ease
- Ideal for high viscosity or shear sensitive products
- Pumps can run-dry indefinitely without damage
- No check valves or seal water flush systems
- Fully reversible – pumps in either direction
- Minimal maintenance – the hose is the only wearing part
- Pump casings available in a choice of materials including stainless steel
- Suction lift capability up to 9.5 metres and self-priming
- Highly accurate

Technical Specifications

- Maximum intermittent flow rate of: 5,130 litres per hour
- Maximum continuous flow rate of: 3,990 litres per hour
- Flow per revolution of: 0.95 litres
- Pressure capability of: 10 Bar
- Maximum temperature: 80 Degrees Celsius
- Inner hose diameter of: 32 mm
Technical Specifications

- **Operating Speeds:** 0 to 100rpm
- **Product Temperature Range:** -10 °C to +80 °C
- **Suction Lift:** 9.5 metres lift
- **Hose Materials:** Natural Rubber, Nitrile (Buna), EPDM and CSM
- **Connections available:** BSP, NPT, DIN, ASA: 316 St. Stl., PVC
- **Hose Lubricant Required:** 5 litres
- **Sound level at 1m:** < 70 dB(A) (pumping water at maximum continuous flow)
- **Optional Hose Failure Sensor:** Capacitive DC sensor

Materials of Construction

- **Pump housing:** Carbon steel or stainless steel
- **Rotor:** Aluminium or carbon steel
- **Compression rollers:** Aluminium or Acetal
- **Front cover:** Carbon steel or stainless steel
- **Support Frame:** Carbon steel or stainless steel
- **Seals:** Neoprene or Nitrile

Approximate Weight 154kgs

Actual weight depends upon drive fitted.
Contact factory for details.

The information contained in this document is believed to be correct but neither AX Holdings nor its subsidiary companies or distributors or representatives accept any liability for any errors or omissions and reserves the right to alter any specifications without notice. All values given in this document are values under controlled test conditions. Actual site flow rates achieved may differ due to changes in temperature, product viscosity, suction and discharge pressures and/or system configuration.